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Camera Models

» Describe the mathematical relationship
between the coordinates of a point in 3D
space and the coordinates of its
projection onto the image plane
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Camera (eye) is the bridge between the real and virtual world
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Outline

 Pinhole model
— MVP matrices
— intrinsic & extrinsic matrices
— camera calibration
* Non-pinhole model
— thin-lens equation
— lens distortion
— nonlinear calibration
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Pinhole Model

In computer graphics, the MVP matrices describe such a relationship
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screen coordinates object local coordinates
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Pinhole Model

_338 — _xw —
yS — P V yw
Zs Zw
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screen coordinates world coordinates
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Pinhole Model

0 1/f
1/ 0

projection matrix

o O = O

R t
0 1
view matrix
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Pinhole Model

0
1
0 0 1/f
0 1/f 0

projection matrix

R

0

view matrix

Referred to as extrinsic matrix in computer vision




Pinhole Model
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screen coordinates projection matrix camera coordinates
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Pinhole Model

Recall Introduction to Graphics

Y
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Pinhole Model

T 1 0 O 0 T, T, Zi
ys| {01 0 0| |yl | w b
| 100 0 1/f| |z| |1/ |
W | 0 0 1/f O | [we _zc/ f] ]

2 1 are always clipped between [ -1, 1]

Ws Ws

In rasterisation, screen coordinates |

Focal length determines the field of view of the virtual camera. How?
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Pinhole Model

_:135- (1 0 0 0 | _:EC- i T, | _ZLCC
Ys | 0 1 0 0 Ye | Ye Ziyc
2 00 0 1/f| | 2 1/f %
ws| |0 0 1/f 0 | |we] ze/ f 1

In computer vision, the projection matrix is replaced by an intrinsic matrix
which maps the camera coordinates to image/pixel coordinates
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Convert the projection matrix into an intrinsic matrix

Pinhole Model

0
0

1/ f

0
0
0

o
0 f
0 0

Remove depth from screen coordinates
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Pinhole Model

Convert the projection matrix into an intrinsic matrix

0 0
0 0

1 0

focal length in pixel unit
(2D scaling)

Le

=

f:B 0 oy
0 fy oy
0O 0 1

shifting the pixel origin
(2D translation)




Pinhole Model

image coordinates
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intrinsic matrix

camera coordinates



Pinhole Model

image coordinates
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intrinsic matrix
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Pinhole Model

T fe 8 0
yi | = |0 jb Oy
wi_ i 0 0 1

intrinsic matrix
(5 free parameters)

Rsxs

thl

extrinsic matrix
(3+3 free parameters)

camera matrix
(3x4 shape)

Q: Why is it okay to fix the homogeneous division to 1? How come the extrinsic matrix does not need a scaling factor?

.8 UNIVERSITY OF

E..

CAMBRIDGE




Thin-lens Model

Real cameras are not pinhole

)
R

Image plane Image plane

_J
- Y
do dq
Thin-I ti L + L L
in-lens equation;: — + — = —
a di do f

Where is the camera origin of a thin-lens model?
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Radial Distortion

Pincushion distortion No distortion Barrel distortion

Light rays bend at a different angle near the edges of the lens than those at the optical center
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Radial Distortion

Ldistorted — CE‘(l + k1T2 + 162744 + k3r6)
Ydistorted — y(l + 'lflf'a2 + k2T4 + k3r6)

X, Yy — undistorted pixel locations in normalized image coordinates
(dimensionless), calculated from pixel coordinates by translating to
the optical center and dividing by the focal length in pixels

k1, k2, k3 — radial distortion coefficients of the lens
2 = xA2 + y"2
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Radial Distortion

No distortion Barrel distortion Pincushion distortion
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Tangential Distortion

N

Sensor plane

Occurs when the lens and the image plane are not parallel
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Tangential Distortion

Tdistorted = T + 2}?133'?/ + D2 (TQ - 2‘7:2)
Ydistorted = Y + D1 (TQ + 2y2) + 2p2xy

X, Yy — undistorted pixel locations in normalized image coordinates
(dimensionless), calculated from pixel coordinates by translating to
the optical center and dividing by the focal length in pixels

p1, p2 — tangential distortion coefficients
2 = x"2 + y"2
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Camera Resectioning

* The process of estimating the camera
parameters (e.g. extrinsic, intrinsic,
distortion) given a camera model, i.e.
geometric camera calibration
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Extrinsic Calibration

Equivalent to camera pose estimation,
i.e. camera pose and extrinsics can be mutually converted

RQ=1I = Q=R'

Rl|tl]c=Rc+t=0 = c=-R't

Q, ¢ — camera pose (orientation Q + center c)
R, t — camera extrinsics (rotation R + translation t)
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Extrinsic Calibration

« The Perspective-n-Point (PnP) problem: estimating the pose of
a calibrated camera, i.e. known intrinsic and distortion, given a
set of n 3D points in the world and their corresponding 2D
projections in the image

« Correspondence established with known calibration patterns
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Calibration Patterns

Eﬂmm
Eﬂﬂ@ﬂﬂmﬂm

HEBmEoEER

G - L B

Checkerboard AprilTags

e similar to QR codes
e encode less data
e faster for real-time applications
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Intrinsic Calibration

Calibrating both the camera intrinsics and extrinsics

. o
vl ~w |v] = K[RIt]
1] 1] p

image coordinates :
camera matrix

— N e 8

C11
C21
C31

C12
C22
C32

C13
C23
C33

- |x
C14

C24 Y

z

C34 | 1

world coordinates

Similar idea: solve for C given a set of n 3D points (x_i, y i, z_i) in the world
and their corresponding 2D projections (u_i, v_i) in the image
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Intrinsic Calibration

- - - - - - X;
Uy U; €11 €12 €13 Ci4 n
1

Ug | YW V| = |€21 C22 (€23 C24 o
1

1 L] lest ez s el |

C11 T + C12Y; + C13 2; + C14
C31 T + C32Y; + C33 2; + C34

U; —

Co1 T; + C22 Y; + C23 Z; + Ca4
C31 T + C32 Y; + C33 2; + C34

S
I
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Intrinsic Calibration

1 Y1 21 1 0 0 0 0 — U1 —U1Y1 —Ui121 — U1
0 0 0 0 1 Y1 Z1 1 —U1T1 —V1Y1 —V121 —V1
Ty Yn 2n MmO 0 0 0 —upT, —UnYn —UnZp —Up
0 0 0 0 Zn Yn 2n N —UpTp —UnYn —UnZn —Up |
A

e The solution vector ¢ holds for an arbitrary scale
e Direct linear transformation (DLT)

— find ¢ that minimises ||Ac|| subject to a unit vector constraint ||c||=1

— solution ¢ = eigenvector of ATA with the smallest eigenvalue
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Direct Linear Transformation

Let A = UDVT,

argmin ||[Ac|| s.t. ||c|]|=1

C
— argmin|[UDV'¢|| st. [|c|]|=1

(&

- T T .|| —

<= argmin||DV'c|| st. ||[Vic|]|=1

C
<= argmin|/Dm|| st. |m||=1, m=V'ec

||Dm]|| is minimum when ||m|| = (0,...,0,1) = ¢ = Vm, the last column of V

i.e. the eigenvector of AT A with the smallest eigenvalue
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Direct Linear Transformation

°
(-

— Simple to formulate and compute
— Minimise the algebraic error
» X
— Not directly outputting the camera parameters
(can be extracted by an RQ decomposition)
— Not modelling distortions
— Not minimising the geometric error
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Nonlinear Calibration

* Minimising the geometric error

« Simultaneously estimate all camera parameters (extrinsic,
intrinsic, and distortion) using nonlinear least-squares
minimisation (e.g. Levenberg—Marquardt algorithm)

arggninz | (Cs(p:) — xi) ||?

 Use the DLT solution as the initial estimate of the intrinsics and
extrinsics and zero as the initial estimate of the distortion
coefficients
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Nonlinear Calibration

* In most modern XR devices, the intrinsic and
distortion parameters can be provided by the
manufacturer (reduced to a PnP problem)
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Levenberg—Marquardt (LM) Algorithm

» Atrust-region approach to solve the
nonlinear least squares problem

m™m

F(B)=> ri(B)

1=1

arg min f(f3)
B
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Levenberg—Marquardt (LM) Algorithm

Gradient descent: Brt1 = Bn — AV f(5r)
Newton’s method:  Bus1 = B — Hf(B2) 'V F(8n)
N——
Hessian

LM algorithm:  Bu+1 = B — (HF(B,) + A1) V£(5,)

Hf(8) ~ (Jr(B))" Jr(B)

\z.—/ Both Gauss-Newton and
Jacobian LM use this approximation
for the nonlinear least

r(ﬁ) = (7“1 (5),7“2(6)7 ,Tm(ﬁ))TJ square problem

G

TV
residual vector
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