Camera Models

Dr Fangcheng Zhong

Camera Models

- Describe the mathematical relationship between the coordinates of a point in 3D space and the coordinates of its projection onto the image plane

Camera (eye) is the bridge between the real and virtual world

Outline

- Pinhole model
- MVP matrices
- intrinsic \& extrinsic matrices
- camera calibration
- Non-pinhole model
- thin-lens equation
- lens distortion
- nonlinear calibration

Pinhole Model

In computer graphics, the MVP matrices describe such a relationship

screen coordinates
object local coordinates

Pinhole Model

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\mathbf{P} \mathbf{V}\left[\begin{array}{l}
x_{w} \\
y_{w} \\
z_{w} \\
w_{w}
\end{array}\right]
$$

screen coordinates
world coordinates

Pinhole Model

$$
\begin{aligned}
& \text { 3X3 rotation translation } \\
& {\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / f \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{c|c}
& / \\
\mathbf{R} & \mathbf{t} \\
\hline \mathbf{0} & 1
\end{array}\right]\left[\begin{array}{l}
x_{w} \\
y_{w} \\
z_{w} \\
w_{w}
\end{array}\right]} \\
& \text { view matrix } \\
& \text { focal length }
\end{aligned}
$$

Pinhole Model

$$
\left[\begin{array}{l}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / f \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{ccc}
\mathbf{R} & \mathbf{t} \\
\text { projection matrix }
\end{array}\left[\begin{array}{c}
\mathbf{0} \\
\hline
\end{array}\right]\right.
$$

Referred to as extrinsic matrix in computer vision

Pinhole Model

$$
\left[\begin{array}{l}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / f \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right]
$$

screen coordinates
camera coordinates

Pinhole Model

Recall Introduction to Graphics

Pinhole Model

equivalent relation

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / f \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right]=\left[\begin{array}{c}
x_{c} \\
y_{c} \\
1 / f \\
z_{c} / f
\end{array}\right] \curvearrowright\left[\begin{array}{c}
\frac{f}{z_{f}} x_{c} \\
\frac{f}{z_{c}} y_{c} \\
\frac{1}{z_{c}} \\
1
\end{array}\right]
$$

In rasterisation, screen coordinates $\left[\frac{x_{s}}{w_{s}}, \frac{y_{s}}{w_{s}}\right]$ are always clipped between [-1, 1] Focal length determines the field of view of the virtual camera. How?

Pinhole Model

The intrinsic matrix does not preserve the depth information

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
z_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 / f \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right]=\left[\begin{array}{c}
x_{c} \\
y_{c} \\
1 / f \\
z_{c} / f
\end{array}\right] \sim\left[\begin{array}{c}
\frac{f}{z_{c}} x_{c} \\
\frac{f}{z_{c}} y_{c} \\
\frac{1}{z_{c}} \\
1
\end{array}\right]
$$

In computer vision, the projection matrix is replaced by an intrinsic matrix which maps the camera coordinates to image/pixel coordinates

Pinhole Model

Convert the projection matrix into an intrinsic matrix

$$
\left[\begin{array}{c}
x_{s} \\
y_{s} \\
w_{s}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f & 0
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right] \sim\left[\begin{array}{cccc}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right]
$$

Remove depth from screen coordinates

Pinhole Model

Convert the projection matrix into an intrinsic matrix

$$
\underset{\substack{\text { focal length in pixel unit } \\
\text { (2D scaling) }}}{\left[\begin{array}{cccc}
f_{x} & 0 & 0 & 0 \\
0 & f_{y} & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \underset{\substack{\text { shifting the pixel origin } \\
\text { (2D translation) }}}{\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right]} \stackrel{\left[\begin{array}{cccc}
f_{x} & 0 & o_{x} & 0 \\
0 & f_{y} & o_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}{\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right]}
$$

Pinhole Model

$$
\begin{aligned}
& \text { focal length principal point offset } \\
& {\left[\begin{array}{c}
x_{i} \\
y_{i} \\
w_{i}
\end{array}\right]=\left[\begin{array}{cc}
f_{x} & 0 \\
0 & f_{y} \\
0 & 0
\end{array}\right.} \\
& \text { image coordinates } \\
& \text { intrinsic matrix } \\
& \text { camera coordinates }
\end{aligned}
$$

Pinhole Model

$$
\begin{gathered}
{\left[\begin{array}{c}
x_{i} \\
y_{i} \\
w_{i}
\end{array}\right]=\left[\begin{array}{cccc}
f_{x} & s & o_{x} & 0 \\
0 & f_{y} & o_{y} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{c} \\
y_{c} \\
z_{c} \\
w_{c}
\end{array}\right]} \\
\text { inage coordinates skew } \\
\text { intrinsic matrix } \\
\text { camera coordinates }
\end{gathered}
$$

Pinhole Model

$\left[\begin{array}{c}{\left[\begin{array}{c}x_{i} \\ y_{i} \\ w_{i}\end{array}\right]} \\ \underset{\substack{\text { intrinsic matrix } \\ \text { (5 free parameters) }}}{\left[\begin{array}{cccc}f_{x} & s & o_{x} & 0 \\ 0 & f_{y} & o_{y} & 0 \\ 0 & 0 & 1 & 0\end{array}\right]}\left[\mathbf{R}_{3 \times 3} \mid \mathbf{t}_{3 \times 1}\right. \\ {\left[\begin{array}{c}\text { extrinsic matrix } \\ \text { (3+3 free parameters) }\end{array}\right.}\end{array}\left[\begin{array}{c}x_{w} \\ y_{w} \\ z_{w} \\ 1\end{array}\right] \underset{\substack{\mathbf{C} \\ \text { camera matrix } \\ \text { (3x4 shape) }}}{\left[\begin{array}{c}\mathbf{K}[\mathbf{R} \mid \mathbf{t}]\end{array}\right]}\left[\begin{array}{c}x_{w} \\ y_{w} \\ z_{w} \\ 1\end{array}\right]\right.$

Q: Why is it okay to fix the homogeneous division to 1 ? How come the extrinsic matrix does not need a scaling factor?

Thin-lens Model

Real cameras are not pinhole

Thin-lens equation: $\frac{1}{d_{1}}+\frac{1}{d_{2}}=\frac{1}{f}$
Where is the camera origin of a thin-lens model?

Radial Distortion

Light rays bend at a different angle near the edges of the lens than those at the optical center

Radial Distortion

$$
\begin{aligned}
& x_{\text {distorted }}=x\left(1+k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}\right) \\
& y_{\text {distorted }}=y\left(1+k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}\right)
\end{aligned}
$$

x, y - undistorted pixel locations in normalized image coordinates (dimensionless), calculated from pixel coordinates by translating to the optical center and dividing by the focal length in pixels
k1, k2, k3 - radial distortion coefficients of the lens
$r^{\wedge} 2=x^{\wedge} 2+y^{\wedge} 2$

Radial Distortion

No distortion

Barrel distortion

Pincushion distortion

Tangential Distortion

Occurs when the lens and the image plane are not parallel

Tangential Distortion

$$
\begin{aligned}
& x_{\text {distorted }}=x+2 p_{1} x y+p_{2}\left(r^{2}+2 x^{2}\right) \\
& y_{\text {distorted }}=y+p_{1}\left(r^{2}+2 y^{2}\right)+2 p_{2} x y
\end{aligned}
$$

x, y - undistorted pixel locations in normalized image coordinates (dimensionless), calculated from pixel coordinates by translating to the optical center and dividing by the focal length in pixels
p1, p2 - tangential distortion coefficients
$r^{\wedge} 2=x^{\wedge} 2+y^{\wedge} 2$

Camera Resectioning

- The process of estimating the camera parameters (e.g. extrinsic, intrinsic, distortion) given a camera model, i.e. geometric camera calibration

Extrinsic Calibration

- Equivalent to camera pose estimation,
i.e. camera pose and extrinsics can be mutually converted

$$
\mathbf{R Q}=\mathbf{I} \Rightarrow \mathbf{Q}=\mathbf{R}^{T}
$$

$$
[\mathbf{R} \mid \mathbf{t}] \mathbf{c}=\mathbf{R} \mathbf{c}+\mathbf{t}=\mathbf{0} \Rightarrow \mathbf{c}=-\mathbf{R}^{T} \mathbf{t}
$$

\mathbf{Q}, \mathbf{c} - camera pose (orientation $\mathbf{Q}+$ center \mathbf{c})
\mathbf{R}, \mathbf{t} - camera extrinsics (rotation $\mathbf{R}+$ translation \mathbf{t})

Extrinsic Calibration

- The Perspective-n-Point (PnP) problem: estimating the pose of a calibrated camera, i.e. known intrinsic and distortion, given a set of n 3D points in the world and their corresponding 2D projections in the image
- Correspondence established with known calibration patterns

Calibration Patterns

Checkerboard

AprilTags

- similar to QR codes
- encode less data
- faster for real-time applications

Intrinsic Calibration

Calibrating both the camera intrinsics and extrinsics

$$
\begin{aligned}
& {\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right] \sim w\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\underbrace{\mathbf{K}[\mathbf{R} \mid \mathbf{t}]}_{\mathbf{C}}\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24} \\
c_{31} & c_{32} & c_{33} & c_{34}
\end{array}\right]}
\end{aligned}\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Similar idea: solve for C given a set of n 3D points ($x _i, y_{-} i, z_{-} i$) in the world and their corresponding 2D projections (u_i, v_i) in the image

Intrinsic Calibration

$$
\begin{gathered}
{\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right] \sim w\left[\begin{array}{c}
u_{i} \\
v_{i} \\
1
\end{array}\right]=\left[\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{14} \\
c_{21} & c_{22} & c_{23} & c_{24} \\
c_{31} & c_{32} & c_{33} & c_{34}
\end{array}\right]\left[\begin{array}{c}
x_{i} \\
y_{i} \\
z_{i} \\
1
\end{array}\right]} \\
u_{i}=\frac{c_{11} x_{i}+c_{12} y_{i}+c_{13} z_{i}+c_{14}}{c_{31} x_{i}+c_{32} y_{i}+c_{33} z_{i}+c_{34}} \\
v_{i}=\frac{c_{21} x_{i}+c_{22} y_{i}+c_{23} z_{i}+c_{24}}{c_{31} x_{i}+c_{32} y_{i}+c_{33} z_{i}+c_{34}}
\end{gathered}
$$

Intrinsic Calibration

- The solution vector \mathbf{c} holds for an arbitrary scale
- Direct linear transformation (DLT)
- find \mathbf{c} that minimises $\|\mathbf{A c}\|$ subject to a unit vector constraint $\|\mathbf{c}\|=1$
$\underbrace{\left[\begin{array}{l}c_{11} \\ c_{12} \\ c_{13} \\ c_{14} \\ c_{21} \\ c_{22} \\ c_{23} \\ c_{24} \\ c_{31} \\ c_{32} \\ c_{33} \\ c_{34}\end{array}\right]}_{\mathbf{c}}=\mathbf{0}$
- solution $\mathbf{c}=$ eigenvector of $\mathbf{A}^{\top} \mathbf{A}$ with the smallest eigenvalue

Direct Linear Transformation

Let $\mathbf{A}=\mathbf{U D V}^{T}$,

$$
\begin{aligned}
& \underset{\mathbf{c}}{\arg \min }\|\mathbf{A c}\| \\
& \text { s.t. }\|\mathbf{c}\|=1 \\
& \Longleftrightarrow \underset{\mathbf{c}}{\arg \min }\left\|\mathbf{U D V}^{T} \mathbf{c}\right\| \quad \text { s.t. }\|\mathbf{c}\|=1 \\
& \Longleftrightarrow \underset{\mathbf{c}}{\arg \min }\left\|\mathbf{D V}^{T} \mathbf{c}\right\| \text { s.t. }\left\|\mathbf{V}^{T} \mathbf{c}\right\|=1 \\
& \Longleftrightarrow \underset{\mathbf{m}}{\arg \min }\|\mathbf{D m}\| \text { s.t. }\|\mathbf{m}\|=1, \mathbf{m}=\mathbf{V}^{T} \mathbf{c}
\end{aligned}
$$

$\|\mathbf{D m}\|$ is minimum when $\|\mathbf{m}\|=(0, \ldots, 0,1) \Rightarrow \mathbf{c}=\mathbf{V m}$, the last column of \mathbf{V} i.e. the eigenvector of $\mathbf{A}^{T} \mathbf{A}$ with the smallest eigenvalue

Direct Linear Transformation

- Simple to formulate and compute
- Minimise the algebraic error
- Not directly outputting the camera parameters (can be extracted by an RQ decomposition)
- Not modelling distortions
- Not minimising the geometric error

Nonlinear Calibration

- Minimising the geometric error
- Simultaneously estimate all camera parameters (extrinsic, intrinsic, and distortion) using nonlinear least-squares minimisation (e.g. Levenberg-Marquardt algorithm)

$$
\underset{\beta}{\arg \min } \sum_{i}\left\|\left(\mathbf{C}_{\beta}\left(\mathbf{p}_{i}\right)-\mathbf{x}_{i}\right)\right\|^{2}
$$

- Use the DLT solution as the initial estimate of the intrinsics and extrinsics and zero as the initial estimate of the distortion coefficients

Nonlinear Calibration

- In most modern XR devices, the intrinsic and distortion parameters can be provided by the manufacturer (reduced to a PnP problem)

Levenberg-Marquardt (LM) Algorithm

- A trust-region approach to solve the nonlinear least squares problem

$$
f(\beta)=\sum_{i=1}^{m} r_{i}^{2}(\beta)
$$

$$
\underset{\beta}{\arg \min } f(\beta)
$$

Levenberg-Marquardt (LM) Algorithm

$$
\text { Gradient descent: } \quad \beta_{n+1}=\beta_{n}-\lambda \nabla f\left(\beta_{n}\right)
$$

Newton's method:

LM algorithm: $\quad \beta_{n+1}=\beta_{n}-\left(\mathbf{H} f\left(\beta_{n}\right)+\lambda \mathbf{I}\right)^{-1} \nabla f\left(\beta_{n}\right)$

$$
\begin{gathered}
\mathbf{H} f(\beta) \approx(\mathbf{J r}(\beta))^{T} \underbrace{\mathbf{J r}(\beta)}_{\text {Jacobian }} \\
\mathbf{r}(\beta)=\underbrace{\left(r_{1}(\beta), r_{2}(\beta), \ldots, r_{m}(\beta)\right)^{T}}_{\text {residual vector }}
\end{gathered}
$$

Both Gauss-Newton and LM use this approximation for the nonlinear least square problem

